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to be efficient , as well as verifiab le conditions for the regularity condi—
tion to hold.~~For the case where f j  is the distance from warehouse dock i,
with 1 c p < a design is efficient if and only if it is essentially the

• same as a contokr set of some Steiner—Weber function, f~ 
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ABSTRACT

An example of a design might be a warehouse floor, represented by a set

- 

. 
5, of area A, but unspecified shape. Given m warehouse users, we suppose

user i has a known disutility function such that Hi(s), the integral of
over the set S (for example, a total t ravel distance), defines the disutil-

ity of the design S to user i. For the vector H(S) with entries H~(S)~ we

study the vector minimization problem over the set (H(S) : S a design}, and

call a design efficient if and only if it solves this problem. Assuming a

mild regularity condition, we give necessary and sufficient conditions for

a design to be efficient, as well as verifiable conditions for the regularity

condition to hold. For the case where f is the 3. distance from warehousei p

dock i, with 1 c p < ~~~, a design is efficient if and only if it is essentially

the same as a contour set of some Steiner—Weber function , — X111 + 
... +

when the are nonnegative constants, not all zero.

i
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INTRODUCTION

We consider the prob lem of characterizing efficient designs. A “design”

• may be a planar set of known total area A, bu t unspecified shape . Any de-

sign must be contained in some given planar set L. As an example of a design ,

let S be a warehouse floor, and L be the lot of land in which the design will

lie. Assume the design will have in users , with user i having a disutility

function f3., where f 3.(x) is the disutility of the point x in S to user i. For

the warehouse problem f~(x) might be the distance (perhaps weighted by the

frequency of use) which user i must travel , or pay to have traveled , in order

to pick up an item stored at x.

For a given design S, def ine H3.(S), for 1 < i < in, to be the integral of

the function over the set S, so that Hi(S) r.pres.nts th. total disutility

of th. design S to customer i while N (S) — (N1(S), ... , H5(S))
T represents

th. disutility vector of the design S for all users. We call a design S*

eff icient if whenever any design S satisfies H(S) c H(S*), then

it must be true that H(S) — H(S*) . An efficient design thus solves a multiple

objective optimization problem , and is Pare to optimal (10]. An evaluation of

a design as given by H1
(S) may occur when user s are concerned about total dis—

utility. In the warehouse context the disutility of S to user i , Hi(s), might

be appropriat. when the users havi to pay f~r total operating costs, and

cannot agree upon a single—valued disutility function. Tb. total operating

costs for a particular user might be taken as proportional to the total travel

distance due to storing this user ’s items in th. warehouse. Alternatively ,

under an equal likelihood assumption , that is, a random storage policy in a

warehouse (any item is equally likely to be stored at any location within the

warehouse), each total operating cost , when divided by th. constant A. the

area of th. warehouse , becomes an averag. operating cost. Under these

1
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•~~~~ •~~~~~ •~~ —•-~ ---- —•-— • ~~— -7—,..—-

circumstances, the problem under consideration is then one of minimizing the

vector of average operating coats incurred by th. users due to item movement

within the warehouse. A third interpretation of the design problem is as a

multiple objective location problem where the design S is to be located, S

cannot be idealized as a point , and Hi(S) is an average distance of S from

• “existing facility i.”

We remark that in many cases efficient designs should best be viewed as

design guidelines, rather than as final answers. Further, as is typically

the case with multiple objective optimization problems, many different designs

• can be efficient , and the problem remains of choosing among such designs.

Nevertheless we feel that the knowledge of efficient designs should be of

value in helping to delimit the comparison of alternatives as well as to de-

fine more sharply the design problem(s) of interest.

• To the best of our knowledge , the only research on the efficient design

problem for the case in > 1 is by Chal.aet, Francis, and Lawrence (3],

where instead of the disutility of a design to user i being the integral of

a disutility function f1 over the design, the supremum of the disutility func-

tion over the design is used . They develop necessary and suffic ient con-

ditions for a design to be efficient, given very weak assumptions about the

disutility functions, and draw additional conclusions when the functions are

convex. For the case where in • 1, Francis [7] has studied a facility design

problem; a family of such problems is equivalent to the efficient design

problem we consider. The establishment of this equivalenc e is one of our

• 
results. Corley and Roberts [4], as well as Lowe and Hurter (13] have con—

aidered somewhat similar design problems in regional partitioning and market

area contexts. Lowe and Hurter employ the concept of “flat spots” of functions.

This concept also arises in our analysis , although for different reasons .

2
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On c o n s i d e r i n g  a design to be a p o i n t ,  we

obtain the analogous problem of f i n d 1. n g P a r e t o o p t tina 1.

solutions for the vector (f1(x) , .. ., f
a

(Z))s For this latter problem there

is, of course, a substantial literature ((10], (16], [18]), the discussion of

which is beyond the scope of this paper. We single out , however , the case

where each function is a “p lanar” distance from an existing facility

at location q1, say f1(x) — d (x, ~~~ as this case is quite close in spirit
to the warehouse design problem, and has provided much of the impetus for the

study of the efficient design problem. For the case where the distances are

Euclidean, Kuhn (11) has demonstrated that the set of all Pareto optimal solu-

tions is just the convex hull of q1, .. ., q~. Subsequently Wendell Hurter,

and Lowe (17] have studied the problem for the case where the distances are

distances, and concentrated upon developing an algorithm for finding all

• Pareto optimal solutions when p — 1. Their work has in turn motivated work by

Chalmet and Francis, who give a geometrical solution procedure (1], as weil. as

an order a log a algorithm (2] for the case p — 1.

We now give an overview of the paper. In Section 2, after introducing

some definitions and useful notation, we develop necessary conditions for a

design to be efficient. We show that if a design S’~ is efficient, then there

• exists a nonzero column vector A with nonnegative entries, such that ATH(S*)

c ATH(S) for every design S. With N denoting the range of H, the set of all

vectors y such that y • H(S) for some design S, we introduce in Section 3 a

condition, called the Support Regularity Condition (S.R.C.). We say that N

satisfies the S.R.C. whenever every supporting hyperplane P of N, where P —

(x e Em : xT~ — 8), A € E~ , 0 # A > 0, intersects N in a single point. We

subsequently show that when N satisfies the S.R.C. ,  the necessary conditions

for eff iciency, developed in Sec tion 2, are also sufficient. Combining these 

• •• 
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results, we obtain our main result of this paper in Section 3. Assuming the

S.R.C. holds, a design S~ is efficient if and only if S* satisfies the condi-

tion that there exists a nonzero column vector A with nonnegative entries such that

kTH(s*) < \T~fl~) for every design S. This condition can also be characterized

(equivalently) by the Neyman—Pearson Leema. Assuming the S R.C. holds, and

defining 
~ 

by 
~A 

— A 1f1 + ~~.. + Amfm i we show that a design S* is efficient

if and only if there exists a vector A , 0 # \ > 0, and a constant k such that

the following inequalities are true “almost everywhere” (that is, they are

true except possibly on sets of area zero): f~ (x) < k for x c S* , and

> k for x ~ S*.

In Section 4, we identify sufficient conditions for the S.R.C.  to hold.

We prove that if L is a convex set, if each function f~ is convex, and if

th. set of all minimizing points of f~ has area zero, for every \ such that

0 ~ 
‘
~ 0, then the S.R C. is satisfied , so that we can apply the results of

Section 3 to problems having these properties. In particular , if each

is some 
~ 

distance with I ‘
~ 
p ~~~, then the S.R.C. holds. Further, 

~
is just the function occurring in the Steiner—Weber problem (8], (11], with

the \
~ 

being the “weights.” In this case a design S* is efficient if and

only if there exists a vector \ , 0 ~ > 0 , such that S* is a contour set

of the Steiner—Weber function f
~ 

almost everywhere

In the analysis to follow we use Lebesgue measure theory . However , all

of the insight needed can be obtained by thinking of a measurable function as

an integrable function, and the measure of a set as the area (or volume, or

hyp.rvoluae) of a set.
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1. ASSUMPTIONS AND DEFINITIONS

We assume we are given a noneapty set L which is a Lebesgue—measurable

subset of E’~, with ~(L) < •, where p( e ) denotes the measure of a set. Further,

we are given real—valued measurable disutility functions ~~

which have domain L. For each i, 1 <  i < a w e  assume that

I f~ (x)~ dx <

Let A be a given constan t with 0 < A < ~(L), and define a design S to be a

subset of L, of measure A. Let be the collection of all designs.

Given S c  a, we define

Hi(s) — ( f3.
(x)dx , 1 i < in,j s

H(S) • (H
1

(S) , . . . ,

We call H1(S) the tot~il disutility of S to i, and H(S) the total disutility

vector of S.

In this paper we consider the problem of characterizing efficient designs.

A design 5* c .8 is called efficient if whenever a design S satis-

f ies H(S) < 11(5*), then it must be true that H(S) — H(S*). It is useful to

define N — 11(a) to be the range of H.

2. NECESSARY CONDITIONS FOR EFFICIENCY

We first establish N is convex and compact; the development follows that

of Dantzig and Weld (5].

L~~~a 1: N, the range of H, is convex and compact.

Proof: Define f~~1 — 1, and given any measurable subset T of L, let

— ~ JT 
~~ 

‘T ~ ‘T ~~~~

5 
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As T varies over all measurable subsets of L, the corresponding points

y(T) obtained constitute a set , say N’. That is, N’ is the range of y, when

the domain of y consists of all measurable subsets of L. A theorem due to

Lyapunov (14] (see also Lindenstrauss (12]) establishes that N’ is both con—

vex and compact. Further , for any design S , we note that

y(S) — (H (S)~
’, A),

since

— ~.i(S) • A

and

(J~ f1, . . .,  —

Denote by Y(8) the image of i& under Y , fY (S)  : S € ~~~~ } , and denore by )/‘

the hyperplane

• ‘ — {Y — (y1, ..., y ,  y~~1) € E : y~~1 
— A}.

We observe that y(.8) — H ’ ~J I ’ . Since ,AI’ is closed and convex , and N’ is

compact and convex , y(s&) is compact and convex.

Now define the proj ection P from E~~
1 into as follows:

•
~~~~

‘ ‘
~~
‘ “~ +~~ 

(
~1, 

~~~~~~

that is, P projects the first in entries of any vector in Ein~~ into Em.

Because P is a projection , the image under P of any compact and convex set in

is a compact and convex set in Ein. Thus, in particular , P ( y ( . e) )  is com-

pact and convex. Clearly, H — P(y( s~~~) .  0

Leema 2. Given any design 5, there exists an efficient design S* such that

H(S*) < H(S).

6
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Proof: Given S c .&, let x — H(S), so that x c M. Consider the following

minimization problem:

Tmm À y

subj ect t o y c M, y < x

i.e. y c K — {u c N : u c x)

where A c Em is any vector having all positive entries. Since N is compact,

K is compact (and nonempty also, as x c K). The extreme value theorem now

• implies there exists a vector y*, y* c K , which solves the minimization pro-

blem. Now y~ is efficient, in the sense that there is no z in K such that

z c y* and a ~ y*; for if such a a exists then A
TZ < ~

T
~* giving a contra-

diction. Since y* e N, there exists S~ € such that y* — H(S*).

We claim that ~* is efficient. Indeed , if S is an arbitrary design

in 4 , then a — H(S) cM. If, moreover , H(S) < H(S*), then a < y * < x .

Thus z € K. As was seen above, a < y* implies a — y* and therefore

H(S) — H(S*), proving S~ to be efficient. 0

Let N be a closed convex set in Em and let F(x) be a convex vector

mapping from N into E~ , tha t is , a function from N into Ein such that

F (Ax + (l—A)y) < AP(x) + (l—X)F(y) for every x, y c N and every A for

which 0 < A < 1. A point x in N is efficient if there exists no x in N

such that 1(x) < F(x °) and F (x) ~ F ( x ) .

The following statement is equivalent to Lennna 7.4.1 of Karlin [9].

Le~~a 3. If x* is an efficient point then there exists a vector A c

with A # 0, A > 0, such that

T TA F(x*) < A F(x)

for all x c N.

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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To apply this result to the efficien t design problem, take N • N — H( .~~ ,

which we know to be convex (and compact as well) . Take F(s) • x , clearly

a convex mapping. Then x*, x c H and F(s) F(z*) implies F(s) — F(x*),

so if SC, S 4 x* — H(S*) , x • H(S) , and H(S) < H(S*) then

H(S) — H(S*). Hence , ye have the following necessary condition for effic iency.

Theorem ),. If 5* ~ 4 and SC is eff ic ient , then there exists a vector

~,• ~ A ~1 0, A 0, much tha t

xT11 s*) ATH(S)

for a l l S c  4. 

- j --- ~~~~~~~~~~~~~~~~~~~ 
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3. SUFFICIENT CONDITIONS FOR EFFICIENCY

Theorem 1 gives a necessary condition for a design SC to be efficient.

We wi]]. now show that this condition is also sufficient , provided the range

H of H meets the following regularity condition.

Definition. We say tha t N — H(4) sattsf ice the Support Reg~larity

Condition (S,R.C ) whenever every supporting hypsrplane jlof N,

~.w ~~~~ gm . \Tx _ B )

\ c ~m , such that 0 ~ A > 0, intersects N in a single point.

Theorem 2. Assume H satisfies the S . R I C .  If there exists \ Em,

0 # A > 0, such that with 5* ~ j

X~H(S) (i)

for every S ( , then 5* is an efficient design.

Proof. Let S c 4 be such that H(S) ~~fl(5*). We shall show H(S) • H(S*).

Since H(S) < 11(5*), the hypotheses for A imply

ATH(i) C ATH(S*). (ii)

Since (1) holds when S • 5 , (i) and (ii) imply

• A’rH(SC) (iii)

Let B • ATH(S*) and ~1 • (x : A rx • B). Then (iii) implies N(S*) €

so , with (i) , we conclude is a supporting hyperplane of N Because

H(S*) N , H(S) N , .~~~ intersects N at H(S*) and H(S). Thus the S.R.C. imp lies

11(5*) • H( S) . Hence, SC is eff ic ient,  0

We remark (in the spirit of the proof of Let~ a 2 above) that if

• (x — 8) j s ~ suppor ting hyperplan . of N, with every entry in

~ positive, such that S~ in 3 satisfies ATH(S*) ~ \
& ti(S) for all S 4

• then it is also true that $* is efficient; hence , there are some cases when

a design 5* arising in this way is effic ient even if the S.R.C. does not

hold. -

• 

-
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4. NECESSARY AND SUFFICIENT CONDITIONS FOR EFFIC1~~~T -
• 

-

As a resul t of Theorems 1 and 2 , we have

Theorem 3. Assume N satisfies the S.R.C. Then SC C 4 is efficient if and

only if thete exists A Em, 0 ~~ A > 0, such that

ATH(s*) ATH(S) , for all S c 4 . (1)

For S c , we note, with A — (A
1 . , . ,  A ) T, that

a , a

ATR (s) — ~ A~H1(S) • ( ~ A 
~~ ~ I ~xi—] J s i—i ‘S

a

where — Z ~~~~
i—]

Thus, the condition (1) ii equivalent to

J 5~~x 
~ 

for 41 S C . (2)

For known A , Francis (7] has pointed out that the problem (2) may be solved

using the following ls~ma, a special cas. of a result of Dsntzig and Wald [5],

for the Neyman—Pearson Lemsa :

Lemsa 4. The condition (2) is equivalent to the following condi tion (3) :

there exists a nu~~er k such that

< k  for a1~~st all x 5*
(3)

~~k for aL~~st all x d SC .

(As iso~sto.ary, for a condition to hold for “almost all” points in a set
means that the collection of all points in the set for which the condition

does ~~~ hold has measure zero Likewise, for a condition to hold “almost
everywhere”, abbreviated as i.e., means that the collec tion of all points
for which the condition does not hold has measure zero.)

10 1 
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Theorem 3 and Le~na 3 together provide our main result :

Theorem 4. Assume N satisfies the S.R.C. Then S* c is efficient if and only

if there exi~ts X c Em, with 0 ~~ A a 0, and there exists k, such that

• < k for almost all x c

• 
> k for almost all x ~ S*.

5. SUFFICIENT CONDITIONS FOR THE S.R.C. TO HOLD

To obtain additional insigk~t, we develop sufficient conditions for the

S.R .C. to hold , and show that the S.’.C. holds for a large c-lass of funttions

•
~
•‘ 

~m 
We first introduce some useful notation. Let B

O B < •. Let g be a real—valued measurable function defined on L. For

every real number k, define the following sets:

a(k) Cx c L : g(x) < k}

b(k) • Cx L : g(x) — Id, ab(k) — a(k) u b (k)

• c(k) • Cx e L : g(x) > k}, bc(k) • b(k) u c(k) .

We call b(k) a contour line~~~~g (of value k) .  We say that g has a flat spot

if some contour line of g has positive measure.

Lemsa 5. Suppose g has no flat spot. If S is a measurable subset of L such

that

g(z) < Ic for almost all x c S

g(x)ak for almost all x c

then S — ab(k) i.e.

Proof. Th. hypotheses for S imply S c ab(k) a c .  and ~ c bc(k) i.e., so that

u(S) ~ ~(ab(k)) 
(i)

and ‘

< u (bc (k)).

Because u (b(k)) — 0,

u(~) < ~(c(k)). (ii)

• Hence

B • u (S) + u(~ ) < ~(ab(k)) + ~(c(k) ) B , (iii) 

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ — - -—- -~ --— -—,~~~- -
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and so (i), (ii), and (iii) give u(S) — u (ab(k)), u (~ ) — u(c(k)). Since

S c ab (k) i.e and u (S) • u (ab(k)), S — ab(k) i.e. 0
• Lemsi 6. Suppose g has no flat spots. If S and S’ both minimize over

all S C 4 , then 5
S • i.e.

Proof. Given the hypotheses, the converse of the Neyman—Pearson L e a ,

Theorem 3.1 of Dantzig and Wild [ 5], implies there exist Ic’, Ic’ such that

S c ab(k’) i.e., c bc(k ’) i.e.,

5’ c ab (k’) i.e., ~~~
‘ c bc(k ’) i.e..

Lemsa 3 implies S’ — ab(k’) i.e. and S’ — ab(k’) i.e. Without loss of general—

ity, assume Ic’ < Ic’, so that ab(k’) c ab(k’). Since ~(ab(k’)) — A —

ab(k’) — ab(k’) ac ., so S • ab(k’) i.e. Hence S’ • S’ ac . 0

Le~~a 7. If , for every A c Em, 0 i~ A > 0 , f~ has no flat spots, then the S.R.C.

is satisfied .

Proof. Let — Cx : ATx - B) be any supporting hyperplane of N, with

0 # A > 0  and B < x Ty for all y cM .  Let Jd intersect M a t u and v, so

that A Tu • B — ATv and there exists 5*, 5’ € , such that u —

v — H(S ’). Given any S c , there exists y c N, such tha t y • H(S),

and so A
T
H(S*) — B — xTu(S~ ) — 8 < ATH(S), and hence S* and S’ both minimize

• I 
~A

• Lemea 6 thus implies ~* — S’ i.e. and hence
JS

f • I ~~~~~~~~~

J S* i J S,

which means H (S*) — H ( S’ ) ,  that is, U — v . Hence i)~/ intersects N at * unique

point. 0

We now consider the case where L is a given convex set in Em and g is a

convex function defined on L. For any real number Ic, defin e the set

TIc 
• (XC L : g(x) < k}.
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TIc is convex. We denote the interior and boundary of TIc by int(Tk) and

aT
Ic 

respectively.

The following result is known and readily proven :

• Le~~a 8. If for it least one interior point y of TIc, g(y) • k, then g(z) — Ic

for every point a of TIc.
Corollary. If g(z) < k for some a C Tk~ 

then Cx c L : g(x) — Ic) c 3Tk.

P-roof. By Lemsa 8, if g(z) c Ic for some z in TIc, then g(y) < I c  for every

interior point y of TIc. Hence if x c TIc and g(x) ‘ k (equivalent to

g(x) — Ic) , x is not an interior point of TIc, and so is a boundary point of

T
Ic
. 0

Lemsa 9. If S is any convex (and measurable) set in Em, the boundary of S

has measure zero.

Proof. See Eggleston (6], p. 73.

Theorem 5. Assume L and g are convex (and Lebesgue measurable). If the col-

lection of all minimizing points of g has measure zero, then g has no flit spots.
• Proof. Let J • Cx c L : g(x) — Ic) be any contour line of g. Since u (~) — 0,— 0 if J — •, so assume J ~

Consider the case where there exists no Z c TIc such that g(z) < Ic. In

this case TIc 
u~ .7, so every point in ..7 is a minimizing point of g, and the

hypotheses for $ then imply 1~
(Tk) — 0, so again, trivially, u ( 7 )  — 0.

In the remaining case there exists a c T
k 

such that g(z) < Ic , so the

Corollary to Lemea 8 implies ~.2 c ~~~ Since T
Ic 
is measurable and convex,

has measure zero by Lemea 9, in turn implying ~.7 has measure zero. 0

Corollary. If, for every x c Em, with 0 ‘p~ A > 0, 
~A 

is convex , and the set of

all points minimizing 
~A 

hi. measure zero, then the S.R.C. is satisfied.

We remark that is (strictly) convex for all A , 0 # A > 0 iff f1, •
~~~~

‘

are (strictly) convex. Thus f1, . . . ,  
~ 

strictly convex implies 
~ 

has at

- 

• most one minimizing point , implying in turn that the S.R.C. is satisfied . - —
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IL
For many problems of interest , we might hive fi(x) — d~ (x~ qj), 1 < i < a ,

where d (y, a), y , a € 
TL
, represents the t

v
_distance between y and a, that is, j

p j—l

-
. Kuhn (11) observed that for p • 2, in order to have alternative minima for

e I A d (x , q ), with A • (A , . . . ,  A
m

)
T 

> 0, and at least two A positive,
i—I. ~

the points q~ (I. < i < a) must be colLinear. Actually, this observation is

valid for any p with 1 c p < • (but may be invalid for p — 1 or for p — a ,

p — • being the Tehebyshev distance case). In fact, f1 is strictly convex

for any 1 c p < a, provided that the points q~ 
(1 < i < a) for which Ai ~

are not collinear. When the points q~ 
for which Ai 

a 0 are contained in a line

A , 
~A is strictly convex except on A, is convex on A, and either has a unique —

minimum or is minimal over a line segment contained in A. Hence for 1 < p ‘C 
‘

is convex and the set of all points minimizing 
~A 

has measure zero , and so

the S.LC. is satisfied. The foregoing result is for the case where at least

two Ai are positive. If only one A
~ 

is positive, 
~A clearly has a unique

minimum, and is convex, so that again the S.R.C. is satisfied.

P~rom the discussion of the previous paragraph, when the are

distances with 1 < p < a, we can use Theorem 4 and Le=a 5 to conclude that

c ~ is efficient if and only if there exists A c ~m with 0 ~~ A > 0, and

there exists Ic, such that S* — Cx c L : fA (x) 
< I c )  i.e., that is, there exists

• A £ Em with 0 ~~ A > 0 such that S* is some contour set of almost

everywhere. -
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